

Pasteuria for Nematode Control : Development of a Commercial Production Process

Kelly S. Smith, Thomas E. Hewlett, and Susan Griswold, Pasteuria Bioscience, LLC
 386-462-0008 ksmith@biotech.ufl.org

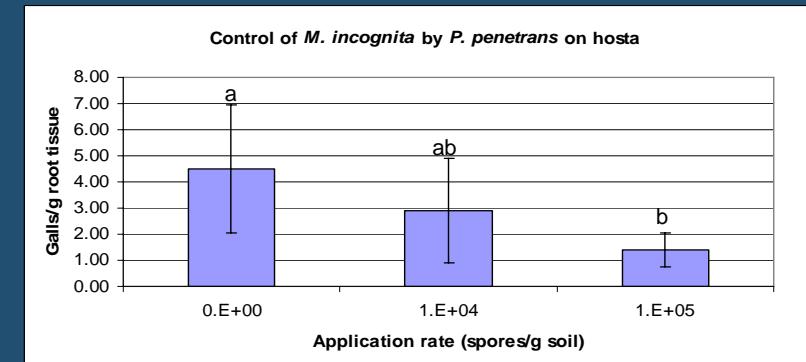
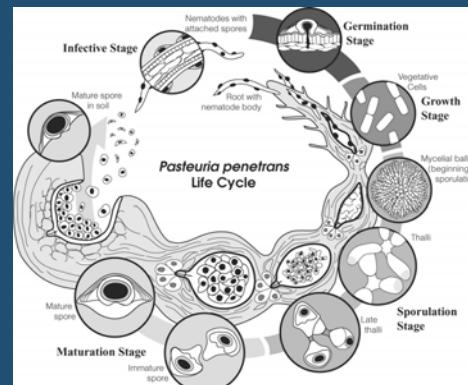
Abstract

Bacteria of the genus *Pasteuria* have long been recognized as promising biological control agents for plant-parasitic nematodes. They have been shown to reduce root-knot nematode damage below economic threshold levels and to improve crop yields. *Pasteuria* endospores, the active ingredient applied to crops, are very desirable as nematode control products due to their inherent resistance to heat, drying and mechanical shearing. *Pasteuria* is highly host-specific and has an excellent safety profile. It has never been produced commercially due the inability of researchers to grow it in the absence of a nematode host, thus precluding the use of large-scale, low-cost production methods.

Pasteuria Bioscience has developed a production process using submerged fermentation, which has allowed us to produce active endospores in benchtop fermenters. Submerged (liquid culture) fermentation is well-understood as an economical production method for a huge variety of industrial products, including biopesticides. Our process models indicate that production of *Pasteuria* will be possible at costs competitive with chemical nematicides, using standard fermentation equipment.

We have conducted tests of *Pasteuria* endospores produced in-vitro for nematode control activity and have found them to be as effective or better than in-vivo endospores in these experiments. In addition, we can produce endospores of *Pasteuria* isolated from Sting nematode, and have demonstrated growth of *Pasteuria* from Cyst, Lance and Lesion nematodes in tissue culture plates. Products controlling this group of nematodes will allow us to become an integral part of pest management strategies in a wide variety of crops, including turf, tomato, strawberry, vegetables, peanut, soybean and sugar beet.

Carrots infested with root-knot nematodes



Soybeans dying due to cyst nematode damage

Plot trial for control of root-knot nematode on ornamental plants (hostas)

Benchtop fermentation producing *Pasteuria* endospores

Results of plot trial showing statistically significant control

References

- Bishop, A. H. and D. J. Ellar. 1991. Attempts to culture *Pasteuria penetrans* in vitro. *Biocontrol Sci. Tech.* 1:101-114.
- Charles, L., I. Carbone, K. G. Davies, D. Bird, M. Burke, B. R. Kerry, and C. H. Opperman. 2005. Phylogenetic Analysis of *Pasteuria penetrans* by Use of Multiple Genetic Loci. *J. Bacteriol.* 187:5700-5708.
- Chen, Z. X. and D. W. Dickson. 1998. Review of *Pasteuria penetrans*: Biology, Ecology, and Biological Control Potential. *J. Nematol.* 30:313-340.
- Chen, Z. X., D. W. Dickson, R. McSorley, D. J. Mitchell, and T. E. Hewlett. 1996. Suppression of *Meloidogyne arenaria* race 1 by soil application of endospores of *Pasteuria penetrans*. *J. Nematol.* 28:159-168..
- Dickson, D. W., M. Oostendorp, R. M. Giblin-Davis, and D. J. Mitchell. 1994. Control of plant-parasitic nematodes by biological antagonists, p. 575-601. In D. Rosen, F. D. Bennett, and J. L. Capinera (eds.), *Biological Control - A Florida Perspective*. Intercept Ltd., Andover, Hampshire, UK.
- Gerber, J. F., T. E. Hewlett, M. L. Smither-Kopperl, and J. H. White. 2002. Vegetative and sporulating structures of *Pasteuria penetrans* from in vitro production. *Phytopathology* 92:S28..
- Hewlett, T. E., K. S. Smith, S. T. Griswold, and W. T. Crow. 2003. Comparison of the efficacy of *Pasteuria penetrans* endospores produced *in vivo* and *in vitro* for the control of *Meloidogyne arenaria*. *Proceedings of the Methyl Bromide Alternatives Organization Annual Meeting*.
- Hewlett, T. E., J. F. Gerber, and K. S. Smith. 2003. *In vitro* Culture of *Pasteuria penetrans*. *Nematology Monographs and Perspectives* 2:1-11.
- Mankau, R. 1995. Bacterial antagonists of nematodes. *BIOCONTROL* 1:15-28.
- Sayre, R. M. and W. P. Wergin. 1977. Bacterial Parasite of a Plant Nematode: Morphology and Ultrastructure. *J. Bacteriol.* 129:1091-1101.