

Aproaches to Plantain Pest Management in Andean South America

Carmita Suárez-1, Jeff Alwang2*, Danilo Vera1* ; Roger Williams3; Mike Ellis4; George Norton5, Colette Harris6; Wills Flowers7.

(1) Instituto Nacional Autónomo de Investigaciones Agropecuarias, Estación Experimental Tropical Pichilingue, Crop Protection Department, Ecuador. E-mail:suarezcapello@yahoo.com (2) Virginia Tech, 215 1 Hutcheson Hall, Blacksburg, (3) OARDC-WOOSTER, Wooster, Ohio; (4) 205 B Hutcheson Hall, Blacksburg, Va 24061; (5) Ohio State University, 224 SELBY OARDC-WOOSTER, OH 44691; (6) Virginia Tech, 215 1 Hutcheson Hall, Blacksburg, Va 24061; (7) Florida A & M University, kTallahassee, FL 32307,

Studies were conducted to evaluate control methods to manage plantain constraints in Ecuador. The most important disease as defined by producers was Black Sigatoka (*Mycosphaerella fijiensis*). Poor agronomic practices on plantations of more than 30 years, debilitated by endemic populations of the Banana stem borer, and a non define nematodes and viruses attack complete the picture. Underlying it another problem was determined: the area could become dependant on same chemical control being used on bananas, with relative success since different responses to the disease from each crop were not being taken into account. The IPM CRSP participation focus the problem from three different angles: Defining causes of crop constraints from both the agronomic and socioeconomic point of view; development of IPM practices to increase yield; and defining channels to deliver technologies to farmers.

Applying basic IPM practices to the crop, improved the general well being of plantations: Plantain yield increased more than 1.5 times, and rate of return of bunches, was reduced in around two months. Natural resistance to pest and diseases increased, and a combination of fungicides and forecasting of the disease reduce spraying frequency. IPM practices plus the entomopathogen *Beauveria bassiana* diminished weevil population. A nematode survey of the area showed that *Meloidogyne* sp and *Helicotylenchus* sp are the main nematodes in the region. Working with groups of farmers, a series of Teaching units were prepared including photographs, questions and experimental tasks that shows research results and biological information related to plantain IPM.

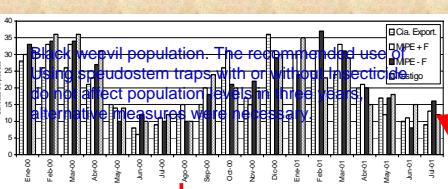
❖ Socioeconomic and biological survey

Socioeconomic information about farmers and regions where the identified crops were being grown were needed (a) to develop strategies for technology and information transfer and (b) to identify factors that influence adoption of IPM on those crops;

Crop constraints derived mainly from poor management practices

The area and the crop suffer from lack of technical support and poor information.

There was not formal (and very poor informal) research for plantain so the project started hiring & training personnel


Base line survey included not only actual knowledge about the crop and the technology applied but perceptions producers have about problems identification and a gender analysis.

At this stage become evident an amount of misidentification of the problems which lead to an excessive and useless employed of pesticides and practices

Constrain	Perception by Sex		Total
	Female (%)	Male (%)	
Bacterias	22,5	29,6	27,7
Dedos maduros	11,7	6,7	8
Hongos	0,9	3,2	2,6
No reconoce	4,5	0	1,2
Picudo	27,9	18,1	20,7
Sigatoka	18	28,1	25,4
Virosis	14,4	14,4	14,4

Information was used to better define transfer tools

❖ Development of knowledge and IPM practices

Using an IPM approach, two experiments were initially established with the objective of having a straight forward response to the alternatives

Farmers were facing in El Carmen region in Ecuador:

(a) re-habilitation or (b) planting again, to replace their old plantation.

Tactics on trial were: In the first case (a), the technical package being applied & recommended by the export companies was considered a treatment, in comparison with two IPM management strategies with and without fungicides. For the second trial (b) three factors (varieties, planting system -crop density-, and levels of management) were tested.

These two experiments were multi purpose: Besides observing plantain response to treatments, it serve as a basis to train young scientists and farmers on a holistic approach to the crop and at the same time defining which areas required a more specific study. The latter were then object of specific studies which in time help to adjust main management practices

Using an IPM approach, two experiments were initially established with the objective of having a straight forward response to the alternatives

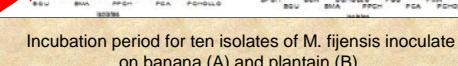
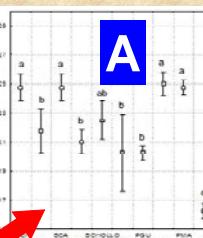
Farmers were facing in El Carmen region in Ecuador:

(a) re-habilitation or (b) planting again, to replace their old plantation.

Tactics on trial were: In the first case (a), the technical package being applied & recommended by the export companies was considered a treatment, in comparison with two IPM management strategies with and without fungicides. For the second trial (b) three factors (varieties, planting system -crop density-, and levels of management) were tested.

These two experiments were multi purpose: Besides observing plantain response to treatments, it serve as a basis to train young scientists and farmers on a holistic approach to the crop and at the same time defining which areas required a more specific study. The latter were then object of specific studies which in time help to adjust main management practices

Economic analysis support biological results, giving higher yields in shorter times

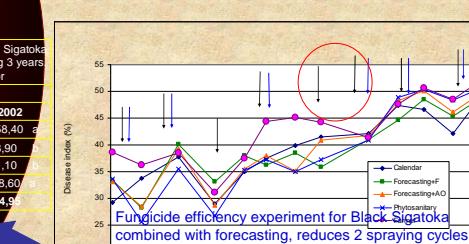


Nematode	Relative frequency (%)	
	Dry Season	Rainy season
<i>Meloidogyne</i> spp.	39,84	49,65
<i>Helicotylenchus</i> spp.	39,32	38,45
<i>Radopholus similis</i>	19,40	10,90
<i>Pratylenchus</i> spp.	1,42	1,0

Harvest return (days) and average weight of bunches in plantain cv. Barragáñete, during 3 cycles. Rehabilitation trial, INIAP – IPM/CRSP, El Carmen, Ecuador.

TREATMENTS	Segundo Ciclo				Tercer Ciclo				Cuarto ciclo			
	Return (days)	Peso (Kg)	Retorno (días)	Peso (Kg)	Return (días)	Weight (Kg)	Return (days)	Peso (Kg)	Return (days)	Weight (Kg)	Return (days)	Peso (Kg)
Explotadora	295	8,76	375	10,07	340	8,00						
MP + fungicida	276	11,44	281	11,88	301	10,70						
MP + Fungicida	286	10,99	278	10,80	302	9,00						
Testigo (agricultor)	347	9,34	325	9,89	363	7,8						

Variable Costs and marginal rate of return on two IPM experiments with plantain in El Carmen region, Ecuador, after three years.

TREATMENTS	No dominates Treatments		Marginal rate of return %	
	New Planting	Rehabilit.	New Planting	Rehabilit.
Single rows + IPM			146,88	
Double rows + Traditional	Farmer	381,92		
Double rows + IPM + No Fung		475,31	358,09	458,72
Double rows + IPM + Fung			370,94	
			632,61	466,93
			349,0	375,4



❖ Defining tool delivery technologies

Establishment of technological levels with farmers (participative diagnostic)

Transfer modules design & validated

New facilitators are now using with confidence the modules developed and de mutto propio, have started new groups

