

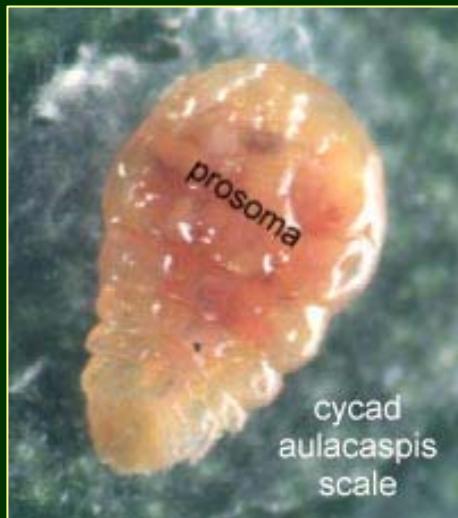
Development of an Integrated Pest Management Solution for Cycad Aulacaspis Scale (*Aulacaspis yasumatsui*) & its Impact on Future Scale Control

By Christine Wiese

Cycad Aulacaspis Scale

- Native to parts of southeast Asia
- Part of a functioning ecosystem
 - parasites and predators are present in sufficient numbers
 - cycads survive low level of infestation

Photo by Holly Glenn


How Did It Get Here?

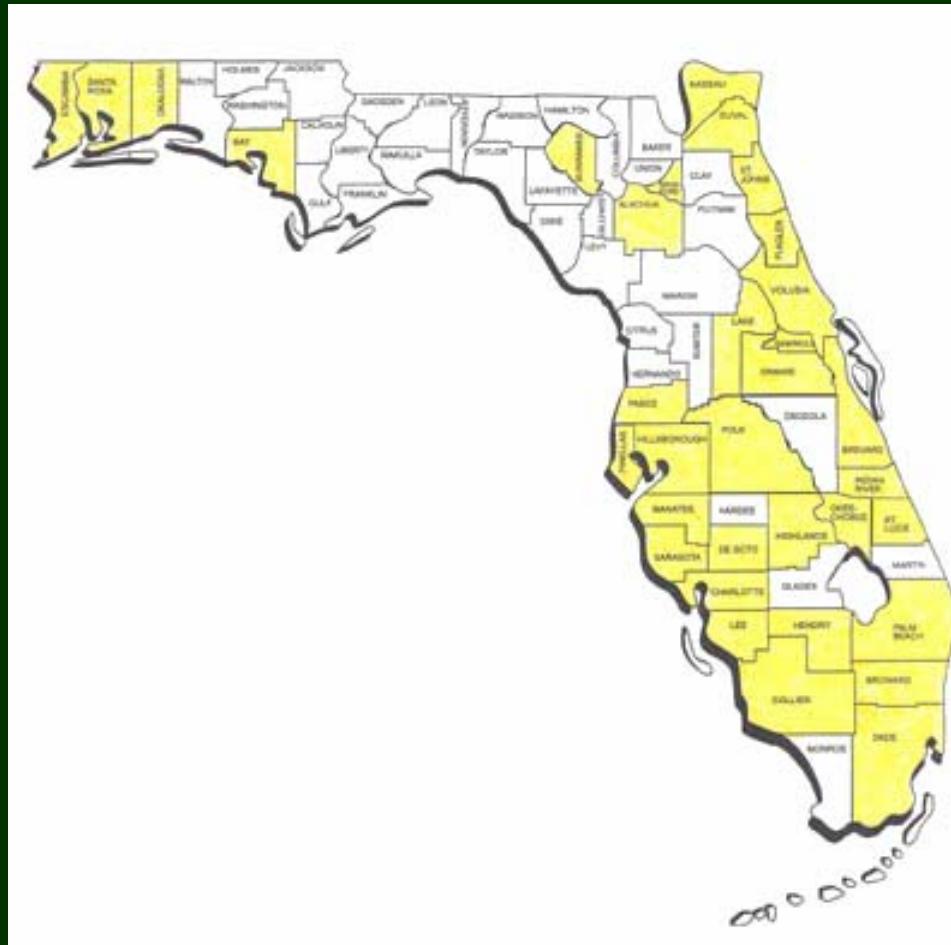
- First arrived in Florida in 1994
- Introduced in Miami area
- Encountered at both MBC and FTBG

Magnolia White Scale?

- Initially thought to be magnolia white scale
- Infestation pattern and intensity prompted ID

Cycad aulacaspis scale; adult female

Magnolia white scale; adult female


Positive ID too late for quarantine
Management of the pest would be necessary

Effects of Florida Introduction

- Nursery growers, collectors, botanical centers and homeowners affected
 - Sale of *Cycas* species dropped significantly in Florida

Scale Moves Rapidly in Florida

Map created by Florida Division of Plant Industry

Management Begins

- Initial efforts to control cycad scale
 - Products successfully used for magnolia white scale
 - Insecticidal soap
 - Horticultural oil
 - Imidacloprid (Merit, Marathon)
 - Dimethoate
 - Malathion

Initial Treatment Results

- Soap and oil
 - somewhat effective
 - time consuming, frequent applications
- Imidacloprid
 - not effective
- Dimethoate and Malathion
 - more effective than soap and oil
 - more caution needed by applicator, systemic insecticide
 - phytotoxicity from dimethoate and malathion

Management Study Continues – Chemical Treatments

- Entomologists see need for study of available chemical products
 - C. Mannion and H. Glenn at TREC
 - Study plants: 1 gallon *C. revoluta*
 - Evaluate soap, oil, imidacloprid, pyriproxyfen, dimethoate, malathion, and thiamethoxam (Flagship)
 - Female scale examined for mortality of adults and eggs

Photo by jurassic landscape.com

Treatment Results

- Soap and Oil
 - effective only with multiple applications
- Imidacloprid and Thiamethoxam
 - not effective
- Malathion and Dimethoate
 - effective with single application
 - caused phytotoxicity of new growth
 - also kills beneficial insects
- Pyriproxyfen
 - effective with single treatment

Pyriproxyfen is the Best Choice

- Examined after 8 weeks
 - 100% of eggs dead
 - 99% of adult females dead
 - no phytotoxicity
 - not detrimental to beneficials
- Additional unpublished tests by Mannion and Glenn showed similar results

Management Studies Move to the Field

- MBC and TREC collaborate on study to evaluate pyriproxyfen (Distance) in the field
- Nine plants selected
 - *Cycas* sp. and *Stangeria eriopus*
 - plants selected based on prior heavy infestations

female cone of *Stangeria eriopus*

The Size Problem

Treatment

- One foliar treatment of pyriproxyfen
 - 12 ounces /100 gallons
- Cover all plant surfaces

Sampling

- Two samples from each of the nine plants
 - one lightly infested
 - one heavily infested
- Samples examined for:
 - mortality of adult females and females with eggs

Results

- Lightly infested samples
 - 6/9 had 90% or greater mortality
 - all had at least 75% mortality
- Heavily infested samples
 - 7/9 had 70-90% mortality
- Result: good control with pyriproxyfen
 - ...but still cannot reach every plant with a foliar spray

Newest Chemical Option: Safari

- New systemic insecticide: dinotefuron (Safari®)
 - available Spring 2005
- Experiments (unpublished) at TREC show excellent control of scale
- MBC uses dinotefuron May 2005
 - results are excellent
 - not harmful to many beneficial insects

Biological Control Study

- USDA and MBC collaborate on evaluation of a parasitic wasp *Coccobius fulvus*

adult

pupa

larva

Photos by Holly Glenn

Experimental Design

- Five groups of three replications selected
- Three releases of 100 wasps each per plant
- Each plant was sampled three times over eight months

Results: Biological Control

- Parasitoid is not active enough to be primary control agent
- Parasitoid will be useful as part of an integrated pest management system

Average percent parasitized scale 51%

Management Studies Result in IPM Program

- Methods: Overview
 - Address each step of IPM system
 - what are we doing now?
 - what else could we do?
 - what changes should we make?
 - Evaluate treatment methods
 - Develop an action plan

Methods: Integrated Pest Management

- Attend to plant cultural issues
- Scout for pests regularly
- Identify Pests
- Establish a threshold of tolerance
- Evaluate all treatment options
- Apply the best option for the situation
- Keep records

Cycad Cultural Issues

- Correct plant placement
 - avoids plant stress
- Increase air flow and access to plant for treatment

Regular Scouting

- General evaluation of collection weekly
- Monthly examination plant by plant

Correctly Identify Pests

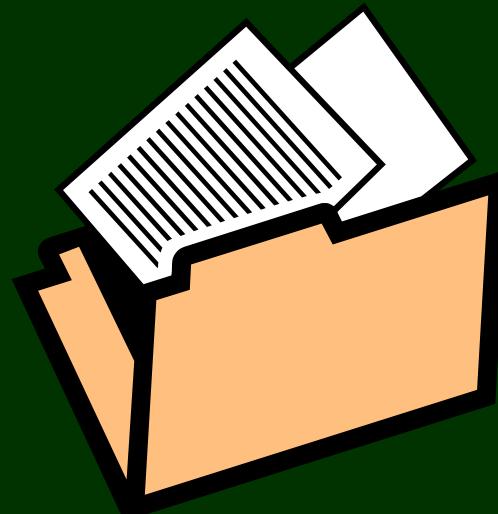
- Local entomologists identify unfamiliar pests

Threshold of Tolerance

- Our priority:
healthy plants
- Two plants with
CAS = time for
treatment

Treatment Options

- Chemical Control
 - oils
 - dimethoate (Cygon®)
 - malathion
 - pyriproxyfen (Distance®)
 - dinotefuron (Safari®)
- Biological Control
 - parasitic wasp
(*Coccobius fulvus*)


Photo by Doug Caldwell

Apply The Appropriate Treatment

- Light infestations can often be controlled with oil
- Parasitic wasp for hard to spray areas
- Retain chemical controls for widespread or heavier infestations
 - avoid chemical resistance by scale
 - use chemicals compatible with biological control (pyriproxyfen and dinotefuron)

Keep Detailed Records

- Seasonal infestation levels
- Species preference by scale
- Can help to focus treatment plan

MBC Current Management Plan

- Increase air flow and plant access
- Regular scouting
- Light / spotty infestations
 - horticultural oils
- Widespread infestations
 - rotate pyriproxyfen (Distance[®]) and
 - dinotefuron (Safari[®])
- Utilize parasitic wasp

Value of MBC's IPM Program for the Future

- MBC can maintain its responsibilities as a repository for population based cycad collections **including *Cycas*** and other genera and species susceptible to cycad scale
- MBC's IPM program is a template for others to use

Conclusion

- Eradication no longer possible
- Need to stop spread
- Responsibly manage each collection
- Work together to share new control information

Special Thanks To:

Catharine Mannion and Holly Glenn at TREC, Divina Amalin at the USDA and the cycad team at MBC!

