

Is IPM Delivering on the Promise?

Economic Evidence from the United States and Abroad

Session Organizers: George W. Norton and Jeffrey Alwang, Virginia Tech; Scott Swinton, Michigan State; Jorge Fernandez-Cornejo, USDA/ERS

•

•

•

Purpose of the Session

- Summarize accumulated evidence of the economic impacts of IPM in the United States and abroad
 - Review results of past impact studies
 - Highlight the evolution of approaches to IPM impact assessment
 - Summarize economic benefits of IPM, value of environmental benefits, and cost effectiveness of alternative IPM diffusion methods.
- Session aimed at IPM scientists and coordinators, as well as practitioners of IPM impact assessment.

•
•
•

Audiences for IPM Impact assessment

- Farmers (for IPM adoption decisions)
- Scientists (for priority setting)
- Extension workers (for recommending)
- National and International Funding Agencies (for accountability, resource allocation, generating support for IPM)

•

•

Nature of IPM Impacts

- **Field and Farm-household Levels** – yield, costs, income, risk, human health and environment, nutrition
- **Watershed and Market levels** – production, prices, trade, income, human health and environment

•

•

Diversity of Impact Assessment Methods

- Budgeting
- Econometric analysis
- Economic surplus analysis
- Calculation of indices (poverty, environmental, nutritional)
- Math programming and simulation

•
•
•

Budgeting

- Partial budgets
- Enterprise budgets

Test for statistically significant differences

-
-
-

Partial Budget

Additions to Net Revenue

Increased Returns:

1. _____ \$_____

2. _____ \$_____

3. _____ \$_____

Total \$_____ (A)

Decreased Costs:

1. _____ \$_____

2. _____ \$_____

3. _____ \$_____

Total \$_____ (C)

A+C = \$_____ (E)

Change in Net Returns = E - F = \$_____

Reductions in Net Revenue

Decreased Returns:

1. _____ \$_____

2. _____ \$_____

3. _____ \$_____

Total \$_____ (B)

Increased Costs:

1. _____ \$_____

2. _____ \$_____

3. _____ \$_____

Total \$_____ (D)

B+D = \$_____ (F)

-
-
-
-
-
-
-

-
-
-

Enterprise Budget

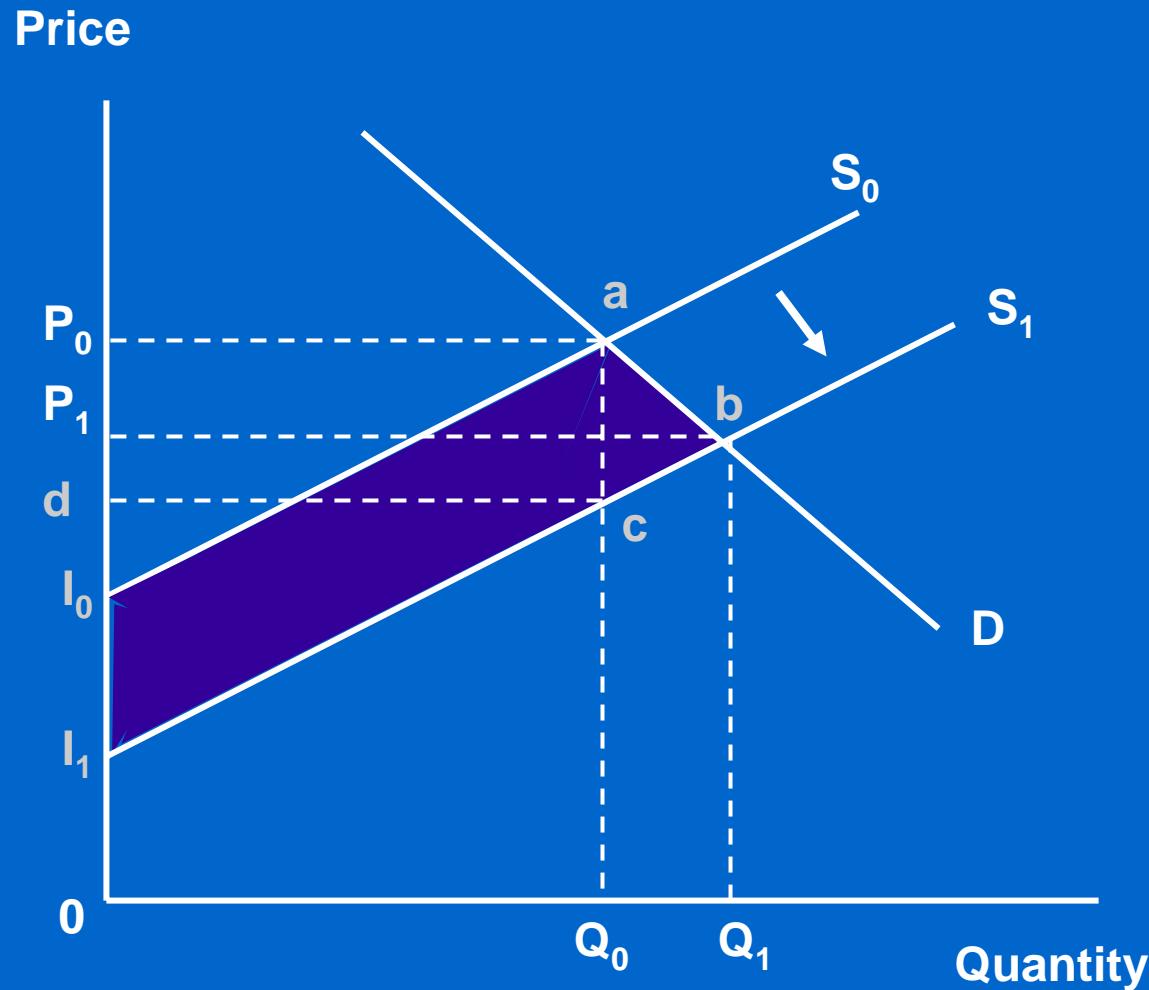
	Units	Price or cost per unit	Value or Quantity	Value or cost
Gross receipts	_____	_____	_____	_____
Variable costs	_____	_____	_____	_____
Income above var. costs	_____	_____	_____	_____
Fixed costs	_____	_____	_____	_____
Total costs	_____	_____	_____	_____
Income above all costs	_____	_____	_____	_____

•

•

Econometric Analysis

- Regression analysis (of survey data) often required to assess factors influencing adoption (and projecting future adoption)
 - Often use probit or multinomial logit
 - Useful for assessing if participation in an IPM program affects adoption
 - Must be careful to assess how people are selected for the program


•

•

Economic surplus analysis

- Combines budget information, adoption information, secondary data on prices, quantities, and trade to estimate market level income effects and their distribution.
- Economic surplus benefits and program costs can be discounted over time in a benefit cost analysis

Economic value of productivity gains from IPM adoption

-
-
-

Indices

- Poverty --
$$P_\alpha = \frac{1}{n} \sum_{i=1}^q \left[\frac{z - y_i}{z} \right]^\alpha$$
- Nutrition – Estimation of changes in consumption and associated changes in calories, protein, etc.
- Health and Environment – assessing changes in pesticide quantity and risk and valuing those changes
 - EIQ
 - CV analysis
 - Experimental

•
•
•

Presentations

1. **Economic Impacts of IPM: Review of Empirical Evidence: Jorge Fernandez-Cornejo, USDA, ERS and Atanu Rakshit, Virginia Tech**
2. **Economic Impacts of Farmer Field Schools, Evidence from Latin America: Ricardo A. Labarta and Scott M. Swinton, Michigan State**
3. **Cost-effectiveness of Alternative IPM Technology Transfer Methods: Jeffrey Alwang, Virginia Tech**
4. **Environmental Benefits of IPM: Evidence at home and abroad: George Norton**