

Cost-Effectiveness of Alternative IPM Technology Transfer Methods

Jeffrey Alwang

Professor

Department of Agricultural and Applied Economics

Virginia Tech

Introduction

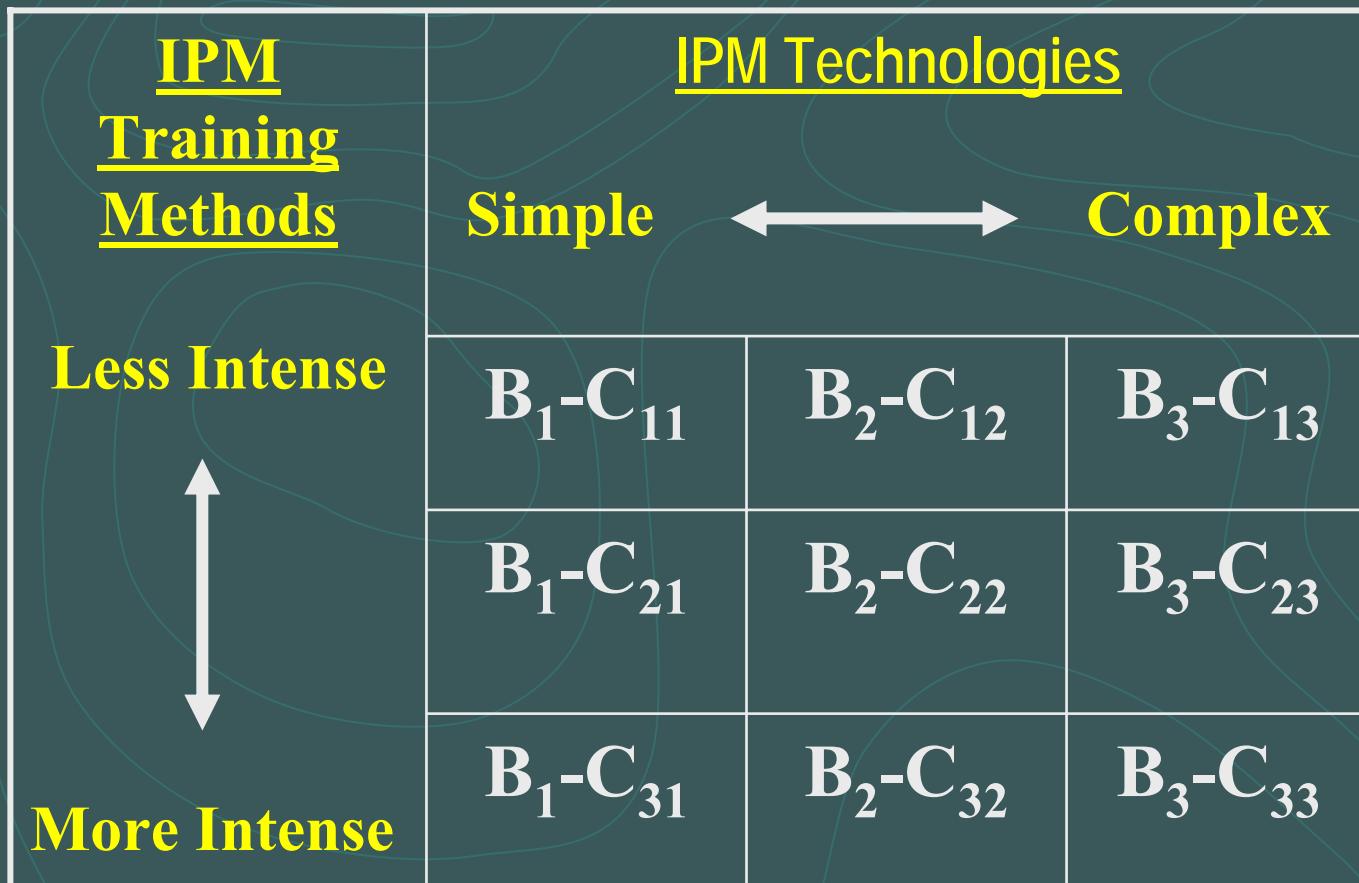
- Many types of agricultural technology diffusion methods exist and they can vary greatly in effectiveness and cost
 - Farmer field schools, field days, mass media, extension farm visits, farmer-to-farmer spread
- In IPM, there is a heated debate over most appropriate diffusion methods to maximize IPM spread

Why is there a debate?

- Many diffusion methods exist, some are better for certain types of information
- IPM information ranges from simple messages to complex management practices
- Intensive training methods cost more but budgets are limited
- Some training methods are less participatory than others
- Some methods take time, and speed of transfer is important for certain types of IPM information
- Information technologies change rapidly
- Some organizations promote one diffusion method as the only useful one
- Selection bias in assessment surveys is often poorly addressed

Most common IPM diffusion methods

- Mass Media – bulletins, newspapers, and electronic messages
- Extension agent visits -- periodic visits by agents to farmers or farm groups to address pest mgt. issues, often in conjunction with other issues
- Field days – single- or multiple-day presentations by IPM scientists or extension to provide training in farm fields about IPM
- Farmer field schools -- participatory learning in regular small group training sessions on IPM over a whole crop season. FFS stresses need to observe fields regularly, conserving natural enemies, farmer experiments, relevant, science-based knowledge, IPM philosophy and agro-ecology
- Farmer-to-farmer spread—least costly, but also least certain


Three components of cost-benefit in case of IPM diffusion

- Effectiveness of diffusion: several dimensions
- Net benefits of adoption: depend on the yield impacts of the IPM technology and the cost of implementation relative to alternative pest-control methods
- Costs of the diffusion method: include fixed and variable costs associated with program delivery

Effectiveness of IPM diffusion methods can be measured in several dimensions:

- ➊ # of farmers reached
- ➋ # of farmers who adopt and # of practices adopted
- ➌ Correct use of information
- ➍ Information retention
- ➎ # who can use information in a new situation
- ➏ # of targeted (e.g. limited resource) farmers reached
- ➐ Speed of information spread

Figure 1. Continuum of IPM Technologies and Training Methods

Costs of diffusion vary depending on the method used and degree of complexity of the IPM practice

Net benefits from adoption of each practice (to farmer)

$$B_{\text{hectare}} = \{(Q_{\text{new}} - Q_{\text{old}}) \times \text{Price}\} - (C_{\text{new}} - C_{\text{old}})$$

Where: Q is the quantity produced under the new (IPM) and old technology; C is the production cost

Benefits to each farmer would be the per-land area benefit times the total land area allocated to the new technology

Note:

External benefits are not included

Health costs are not included

Main issue: How to determine effect of each diffusion method on net benefits to farmers?

- Who participates in or is exposed to diffusion programs?
- What is the impact of participation on on-farm practices? Specifically, how does exposure or participation affect dimensions of adoption?
- What are the net benefits associated with each of these dimensions?

Methods

- Survey data (farm-level observations)
 - Best-case: before and after exposure to diffusion method
 - More frequent case: cross-sectional observations
- Major issues:
 - Treatment effects not observed (unless we have observations before and after)
 - Assignment to the treatment is not random
 - Cannot compare outcomes for participants to those for non-participants without addressing this problem
 - Numerous solutions including selectivity models, propensity score matching, etc.

Methods

- Analysis of outcomes:
 - Determinants of binary adoption (probit, logit)
 - Determinants of IPM continuum adopted:
 - Number or percentage of practices adopted
 - “Correct” use
 - Determinants of yields, per-unit costs, profits
 - Determinants of farmer knowledge of IPM

Methods

- Outcome analysis:
 - Duration of use of practices
 - Spread to other farmers
- Evaluation technique used depends on data:
 - If data show before and after effects and treatment is randomly assigned: could do a comparison of means
 - Otherwise, need to control for determinants of participation and separate participation effects from others, such as wealth, etc.

Methods

Typical case: estimate a model of the following sort:

$$(1) \quad P_i = X_i \beta_p + \varepsilon_i$$

$$(2) \quad Y_{IPMi} = X_{IPMi} \beta_{IPM} + \alpha P_i + \varepsilon_{IPMi}$$

P = participation in the diffusion mechanism (a binary decision)

Y_{IPM} = IPM outcome (knowledge, adoption, yield, etc.)

X = vector of determinants of participation in diffusion

X_{IPM} = determinants of knowledge about, adoption of, or adaptability of IPM (depending on model used)

β, α = model parameters

Participation in the FFS cannot be treated as exogenous if

$\text{Cov}(\varepsilon_i, \varepsilon_{IPMi}) \neq 0$, if unobserved factors affect both participation and the outcome

Evidence from previous studies: FFS

- Selection bias issues in some studies over estimated effects of FFS training: Studies that do not control for selection bias find higher yields and less pesticide use among FFS farmers (Larson et al. 2002).
- Participants have higher IPM knowledge than non-FFS farmers. (Feder et al. 2004; Godtland et al. 2004)
- Participants retain IPM knowledge over time
- Mixed results on impacts on yields and income and in lowering pesticide use
 - Lower pesticide use, but no impact on gross margin (Thailand: Praneetvatakul and Waibel, 2005)
 - No significant impact on economic performance (Feder, et al.)
 - Positive impact on productivity (Godtland, et al.)

Evidence from previous studies: FFS

- IPM knowledge not shared by FFS participants to other farmers (Feder et al.; Rola et al. 2002)
- FFS groups not sustainable (Tripp, et al. 2004)
- Critical mass of participants needed for diffusion to take place: clustering of FFS may improve diffusion process (Waibel, 2006)
- Cost per person trained high: US\$ 47.50 in Indonesia and US\$ 62.00 in the Philippines (Quizon, et al)

Issue: FFS compared to other techniques

- Recent studies from Bangladesh (Ricker-Gilbert, et al.) and Ecuador (Mauceri, et al.) conducted under IPM CRSP, funded by USAID
- Examined impacts on farmer knowledge, adoption, and diffusion of IPM-related information associated with different technology transfer mechanisms
- Controlled for selection into these transfer mechanisms and the costs of each

Findings: Bangladesh

- FFS participants more likely to adopt IPM, but other methods also have positive impact on adoption of multiple practices
- FFS participants do not diffuse results; IPM knowledge is more widespread in non-FFS villages where other methods (field days, agent visits, mass media) were used
- Agent visits most strongly associated with adaptability of IPM to other crops
- Different methods are better at diffusing, depending on the dimension of effectiveness we examined

Adoption Results (Bangladesh)

Dependent var. = No. practices adopted	Simple IPM Practices	Intermediate IPM Practices	Complex IPM Practices
	F = 6.47 Prob > F = 0	F = 4.06 Prob > F = 0	F = 5.12 Prob > F = 0
	Dep. Var (0-5)	Dep. Var (0-9)	Dep. Var (0-3)
Field day	-0.166	0.615**	0.308*
Agent visit	0.233	0.401**	0.06
Predicted FFS	3.870***	4.454***	1.609**
Age	0.028	-0.035	0.041*
Family members	0.063**	0.055	0.02
Farm size	-0.001***	-0.001**	0
Distance to mkt	-0.04	-0.260***	0.021

Findings: Ecuador

- FFS and field day participation had strongest impacts on farmer IPM knowledge
- Some farmer-to-farmer knowledge spread was observed, especially in intensive FFS villages
- FFS and field day participation had a positive impact on intensity of IPM adoption
- Magnitude and significance of the diffusion mechanism depends on the dimension of effectiveness

	FEXP1 (Attend FFS)	FEXP4 (field days)	FEXP5 (pamphlets)	Cost Ratios	
	FFS/ field days	FFS/ pamph lets			
Implementation Costs (per farmer)	\$30 11	\$1.50 2.7	\$0.50 0.33	20:1	60:1
Farmer-to-farmer diffusion (No. of other farmers they shared IPM information with)					
Marginal Impacts on Adoption	.564	.383	.277		
Taking into account diffusion	(\$30/12)	(\$1.50/3.7)	(\$.50/1.33)		
Cost/Total no. of farmers affected	\$2.50	\$0.40	\$.38	6.25:1	6.58:1
Total effect on adoption (= marginal effect +contacts*marginal effect)	3.26	0.84	0.33	3.88:1	9.88:1

Findings: Bangladesh and Ecuador

- Participation in training methods is not random
- FFS participants are more knowledgeable about IPM techniques, but other methods are effective at spreading information (especially field days in Ecuador)
- Costs of field schools make them a relatively expensive means of spreading IPM (especially in Ecuador)

Summary

- Cost-effective means of spreading IPM knowledge are needed
- Evidence gradually accumulating that different dissemination techniques are successful at spreading knowledge
- FFS tend to be effective, but costly and with questionable impacts on spread to non-participants
- Use of combinations of techniques is a promising approach