

Contemporary Tools for the IPM Tool Box

Multi-criteria decision making and mind mapping software

UMASS
AMHERST

Hilary A. Sandler¹, K. Hansen², and K.M. Ghantous¹

¹UMass-Amherst Cranberry Station, East Wareham, MA

²Northeastern IPM Center, Cornell University, Ithaca, NY

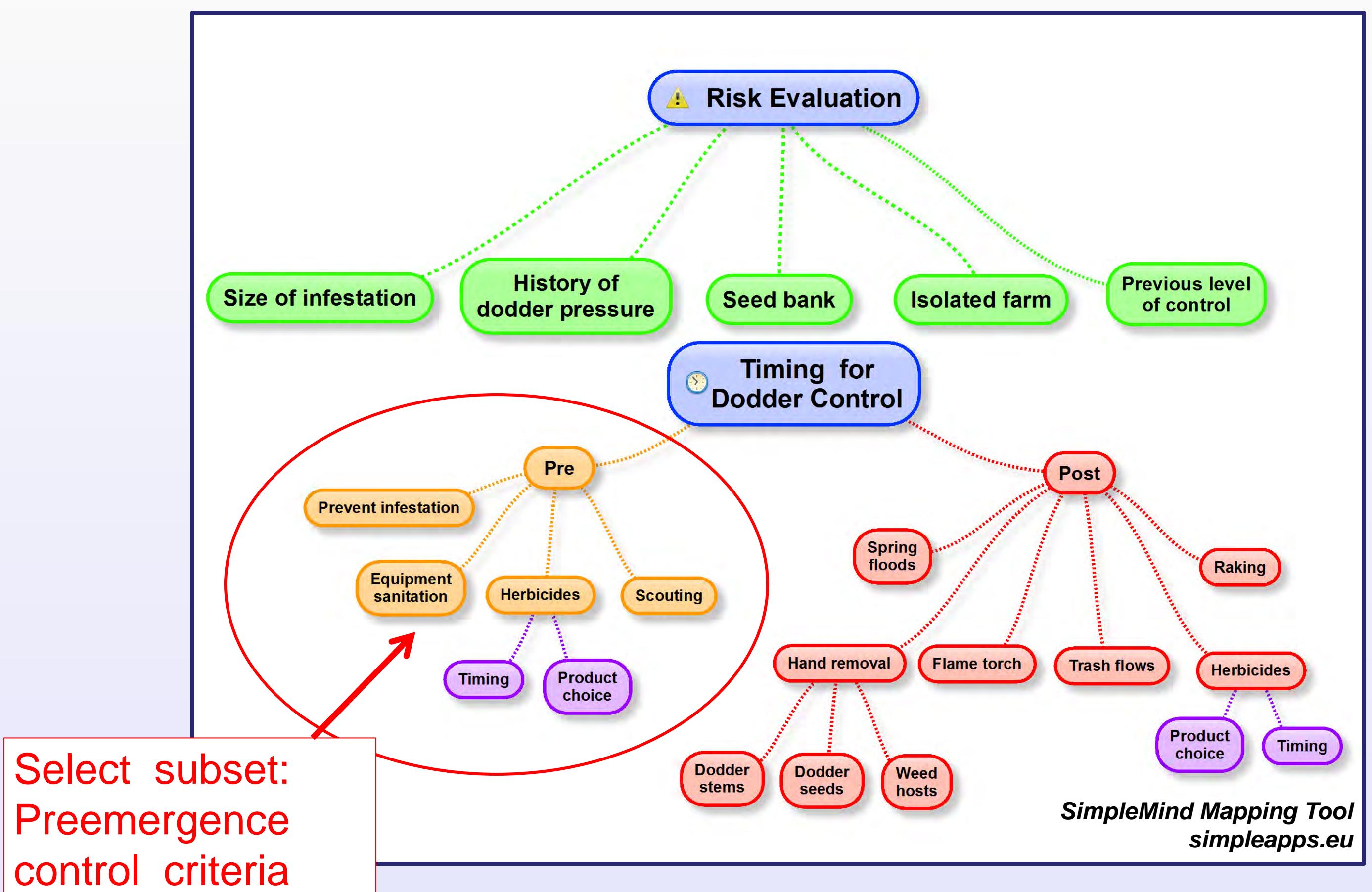
Multi-criteria Decision Making

Analytic Hierarchy Processing (AHP)

- o Weigh and resolve seemingly conflicting criteria to achieve specified goal
- o Pairwise comparisons of multiple criteria in conjunction with ratio scale
- o Steps for Evaluation:
 - Define objective
 - Structure elements into criteria, sub-criteria
 - Make pairwise comparisons
 - Set up $n \times n$ matrices
 - Calculate weighted sums, Consistency ratio
 - Evaluate alternatives according to weights

Application for Weed Management

- o Resolve potentially divergent IPM objectives:
 - Control options
 - Environmental concerns
 - Economic pressures
- o Prioritize strategic alternatives by incorporating qualitative and quantitative data
 - Decision maker's preferences and experiences
 - Economic or other factors


Objective: Design tailored programs for cranberry growers to manage dodder

- o Management is not straightforward
- o No single tactic is effective
- o Many options: farm / year / manager

Use Mind Mapping to Define Criteria

- o Graphical representation of factors affecting decision - making for dodder control.
- o Organizes ideas; ID appropriate pairwise comparisons.

Surveys

Measure relative importance between each pairwise comparison

		EXTREME	VERY STRONG	STRONG	MODERATE	EQUAL	MODERATE	STRONG	VERY STRONG	EXTREME
USE HERBICIDES	X									PREVENT INFESTATION
USE HERBICIDES		X								SANITIZE EQUIPMENT
USE HERBICIDES			X							SCOUT
PREVENT INFESTATION				X						SANITIZE EQUIPMENT
PREVENT INFESTATION					X					SCOUT
SANITIZE EQUIPMENT						X				SCOUT

Fill in Criteria Comparison Matrix

Herbicides 5x more impt than Sanitizing, thus in Sanitize row, value is 0.20.

Item Description	Herbicides	Prevent infestation	Sanitize equipment	Scout
Use herbicides	1.00	7.00	5.00	3.00
Prevent infestation	0.14	1.00	0.33	0.20
Sanitize equipment	0.20	3.00	1.00	0.25
Scout	0.33	5.00	4.00	1.00

Matrix algebra (spreadsheets) generates ranking of priorities.

Promoting Adoption of AHP for Dodder Management

Engage Early Adopters

- o Demonstrate utility of AHP from other examples.
- o Verify key indicators are accurate.
- o Provide individual prioritized plans for dodder management.
- o Work one – on – one to resolve issues and gauge implementation and effectiveness.
- o Re-convene early adopters to share experiences and adjust key indicators if needed.

Fine – Tune the Process

- o Evaluate other criteria groupings in a similar fashion.
- o Evaluate each criteria with respect to broader concepts:
Maximize IPM strategies, Lower risk factors, Minimize time on-farm

IN TERMS OF HERBICIDE USE, WHICH IS MORE IMPORTANT?									
	EXTREME	VERY STRONG	STRONG	MODERATE	EQUAL	MODERATE	STRONG	VERY STRONG	EXTREME
IPM STRATEGIES									LOWER RISKS
IPM STRATEGIES									MINIMIZE TIME
LOWER RISKS									MINIMIZE TIME

Next Steps

- o Do composite as well as individual assessments.
- o Develop user – friendly interface (e.g., radio buttons) to allow growers to determine best IPM program each year.
- o Correlate AHP plans with actual success in the field.
- o Extend AHP to other IPM models.

Acknowledgements

Thomas Saaty: AHP theory development (U. Pittsburgh, Wharton School – U. Penn). Klaus Goepel / ME415 Capstone: YouTube videos.

Thanks to Luis Bojorquez-Tapia and Yugi Sato for guidance and Excel spreadsheets.

Financial support from: EPA Regional Agricultural IPM Grant Program, No. PE-0-96156701.