

Management of Soilborne Pathogens of Tomato and Strawberry: Local Solutions and Global Benefits

Compiled by Frank J. Louws

NSF-Center for IPM and Department of Plant Pathology, North Carolina State University, Raleigh, NC USA; frank_louws@ncsu.edu

SUMMARY:

Multiple soilborne pathogens limit production of tomato and strawberries in NC and surrounding states. A multi-state, interdisciplinary and stakeholder driven research and extension program was implemented to mitigate losses associated with the phase-out of methyl bromide (MeBr) as a soil fumigant due to its ozone depleting properties. Three broad levels of IPM research and extension were implemented in parallel including 1) Tactic Substitution that addressed short term needs of growers who sought non-ozone depleting fumigant alternatives; 2) Tactic Diversification that focused on medium term alternatives that included non-fumigant and IPM based tactics (e.g. rotation, vegetable grafting); and 3) Tactic Development that advanced long-term goals to explore microbial ecology and farming systems-based approaches to replace MeBr-dependent production systems (e.g. anaerobic soil disinfestation; biofumigation; compost- cover crop systems). Significant advancements were made in the science and practice of disease management and crop production. Considerable work was accomplished to identify the presence, diversity and dynamics of the soilborne pathogens associated with root and crown rot problems. Advances were accomplished through Phase I trials to evaluate new products or methods of disease management, and Phase II (small scale) or Phase III (large scale) on farm tests. On-farm work was often designed as randomized complete block design experiments with 3-4 replications and many data sets were collected by growers. All growers in the region transitioned away from MeBr and this local effort contributed to the overall decline in measurable stratospheric bromine levels and apparent increase in ozone levels in the upper stratosphere (global benefits).

Pathogen/Disease	Importance	Fumigation	Other Tactics
Black Root Rot	****	****	***
Phytophthora crown rot (<i>P. cactorum</i>)	***	***	****
Nematodes (RKN, sting, <i>Pratylenchus</i>)	***	****	**
Red Stele (<i>P. fragariae</i>)	*	*	***
Southern stem blight (<i>Sclerotium rolfsii</i>)	*	**	**
Anthracnose crown rot (<i>Colletotrichum gloeosporioides</i>)	**	NA	***
Botrytis crown rot	**	NA	***
Fusarium wilt (<i>F. o. f.sp. fragariae</i>)	*? NA	**	**
Verticillium wilt	NA	****	*
<i>Macrophomina phaseolina</i>	*	***	*

Blue = non soilborne; Red = occur in CA but not NC (yet!)

Who is the enemy that causes black root rot of strawberry?

- Isolated and characterized over 1300 fungi using a hierarchical sampling scheme
 - Fungal complex varies with crop production site
 - Clean plants are difficult to obtain
- Rhizoctonia fragariae*: AG-G, AG-A, AG-I
- Pythium irregularare*, *Pythium spinosum*, *Pythium arotrogus*, *Pythium HS*
- Fusarium solani* and *Fusarium oxysporum*
- Phytophthora crown rot: *Phytophthora cactorum*
- Phytophthora bisheria* Abad, Abad and Louws sp. nov.
- Fusarium oxysporum* f.sp. *Fragariae*

Work by Gloria Abad and Frank Louws

Estimated Returns per Acre for Strawberries as Impacted by Fumigant		
Fumigant	Additional Returns	Net Returns
Chloropicrin	\$1,768	\$16,687
Telone-C35	\$291	\$15,210
Metam Sodium (Shank)	\$3	\$14,992
Methyl Bromide	\$0	\$14,919
Metam Sodium (drip)	-\$2,164	\$12,755
Telone II	-\$4,167	\$10,752
Non-fumigated (check)	-\$6,052	\$8,867

Based on up to 15 trials over 10 years and multiple locations (Sydorovych et al. HortTechnology)

Regional importance of various soilborne tomato pathogens in North Carolina based on Louws et al. 2010

Pathogen	ECOLOGICAL ZONE		
	Coastal Plain	Piedmont	Mountains
<i>Verticillium dahliae</i> race 1	----	*	***
<i>Verticillium dahliae</i> race 2	----	*	****
<i>Fus. oxy. f.sp. lycopersici</i> race 0 or 1	****	****	****
<i>Fus. oxy. f.sp. lycopersici</i> race 2	*	**	****
<i>Ralstonia solanacearum</i> (race 1)	****	***	*
<i>Sclerotium rolfsii</i>	****	**	---
<i>Phytophthora capsici</i>	***	***	***
<i>Meloidogyne incognita</i>	****	**	*

Example of a Phase I trial on Tactic Substitution: Marketable yield as impacted by fumigants, time of application and time of tomato transplanting. Primary targets: Verticillium wilt and weeds.

Treatment	Rate	Time of Application	Marketable Yield (ton/A)
1 No Fumigation	-----	Fall	26.5 a
5 Methyl Bromide:Pic (67:33)	400 lbs/A	Fall	34.3 bc
7 Telone C35	35 gal/A	Fall	36.4 bcd
10 InLine	26 gal/A	Fall bedding; Spring injection	38.9 d
6 No Fumigation	-----	Spring	34.4 bc
9 Telone C35	35 gal/A	Spring	38.6 d
11 Methyl Bromide:Pic (67:33)	400 lbs/A	Spring	38.9 d

Tomatoes: Economic Analysis of Alternatives (Sydorovych et al. HortTechnology: 2008)

Selected alternative soil treatments	Net returns relative to MeBr (\$/acre)
Chloropicrin (high rate)	+906.68
Telone-C35	+848.02
Metam sodium (drip applied)	+136.65
MeBr	0.00
Metam sodium (broadcast + till)	-72.20
Non-fumigated	-2,133.01

Over 9 years of trials

Diversity of Tomato Vegetable Production Systems:

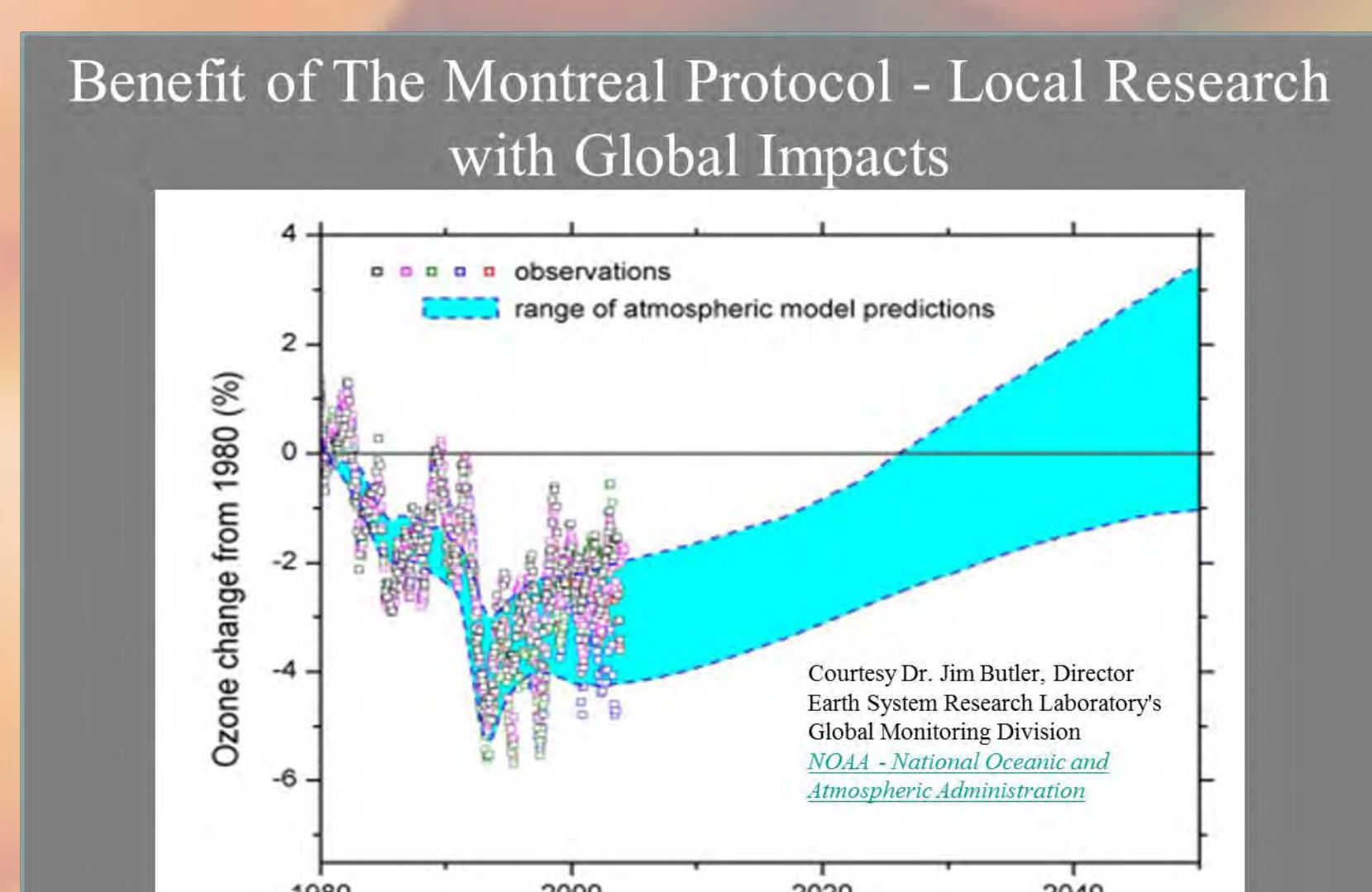
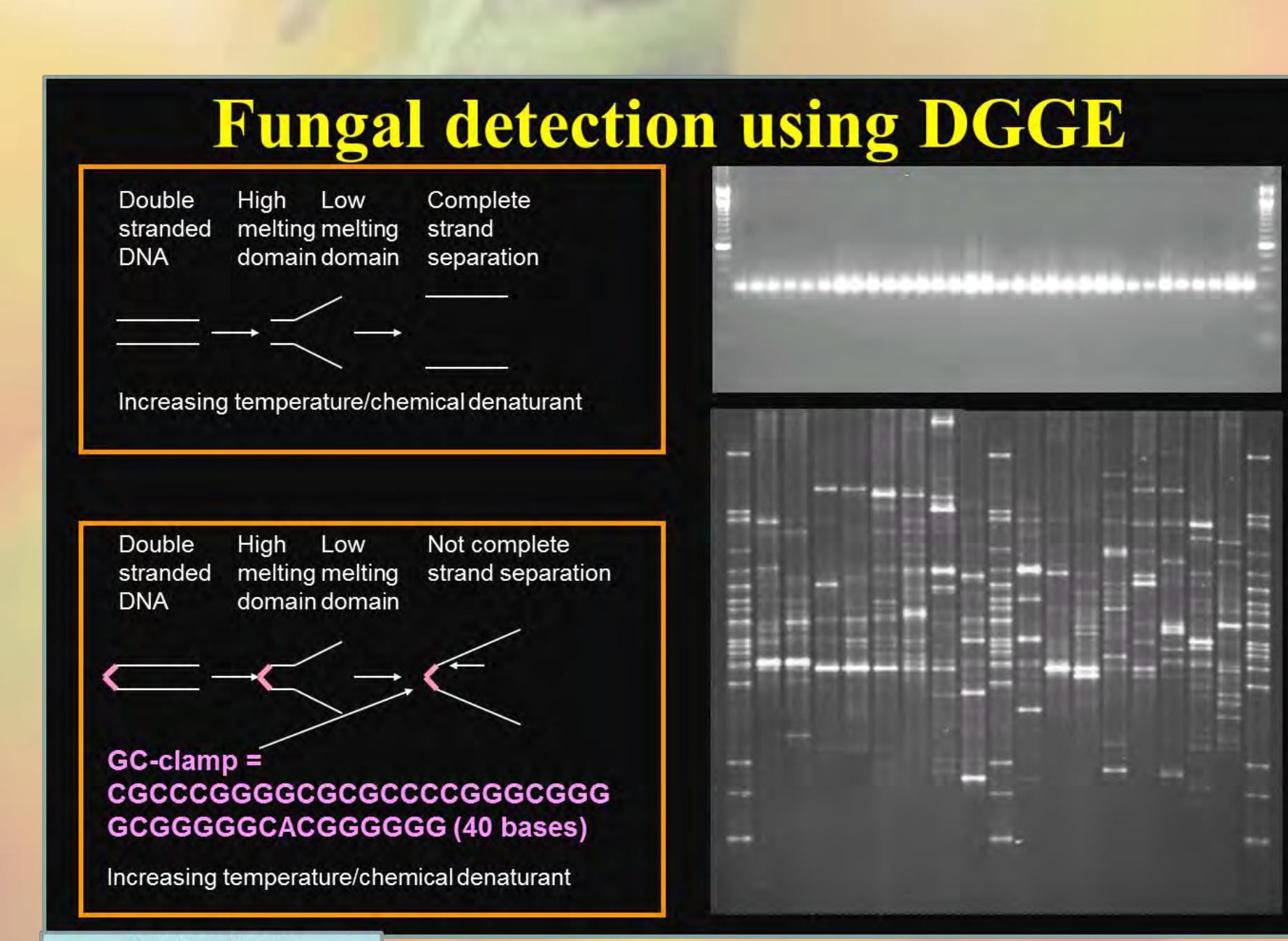
On-Farm Research: Incidence of Bacterial Wilt Fumigated Field Main Effect Estimate(%)

Main Effect	Fumigated	Nonfumigated
Grafting:	29.1a	1.1b
Rootstock:	29.1a	0.9b
'801'	0.9b	0.2b
'802'	0.2b	
Training System:	29.1a	
Single-Leader(Nongrafted)	2.6b	
Double-Leader(Grafted)	0.1c	
Spacing:	29.1a	
18, 24, 30 in.	0.9b	
45.7cm(Nongrafted)	0.02b	
45.7cm(Grafted)	3.2b	
60.9cm(Grafted)		
76.2cm(Grafted)		

^a Means followed by the same letter within a main effect are not significantly different by the Tukey method at P=.05 level of significance.

^b Least-Squares Estimate for percent wilt derived from the number of diseased plants per 10-plant plot.

Mustard Meal Use:

Collaborators in research and extension: A Participatory model to build infrastructure

Plant Pathology
Horticulture
Mycology
Nematology
Entomology
Weed Science
Economics
Engineering
Crop Physiology
Grower Stakeholders

Funding:
USDA Competitive Grants
IR-4 MB Alternatives Project
NC Strawberry Growers Association
NC Tomato Growers Association
NC Vegetable Growers
Industry Support
USDA-ARS – Area Wide Program

Industry participants:
Chemical suppliers and distributors
MANY STRAWBERRY and VEGETABLE GROWERS

Full compliance with the Montreal Protocol will see concentrations of stratospheric ozone return to baseline levels towards the middle of this century.

All growers in our region have transitioned away from Methyl Bromide and use alternative fumigants or alternative farming systems. Advances in understanding pathogen diversity, dynamics and management enhances efficacy of managing soilborne pathogens.

Who is Our Clientele?

- Our clientele's challenges tend to be very different than the clientele in other major methyl bromide dependent production systems.
- We typically do not work with large farming enterprises that have an extensive infrastructure.
- Rather, we work with many growers who tend to have limited acreages that are essential to farm viability.